مطالعه ای بر قضایای نقطه ی ثابت در فضاهای متریک احتمالی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی
- نویسنده ندا عشقایی
- استاد راهنما کوروش نوروزی هاشم پروانه مسیحا
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1390
چکیده
هدف از این پایان نامه معرفی فضاهای متریک احتمالی و بررسی قضایای نقطه ثابت در این فضاهاست. بدین منظور، ابتدا t- نرم ها و خواص آنها را برسی کرده سپس به معرفی فضاهای متریک احتمالی می پردازیم. در پایان مروری بر انواع نگاشت های انقباضی در فضاهای متریک احتمالی و قضایای نقطه ثابت در این فضاها خواهیم داشت. کلمات کلیدی: فضای متریک احتمالی، t- نرم، نگاشت انقباضی، نقطه ثابت
منابع مشابه
قضایای نقطه ثابت در فضاهای d- متریک
در این پایان نامه ابتدا به معرفی فضاهای d- متریک و ساختار توپولوژی روی آن پرداخته هم چنین ویژگی های توپولوژی روی این فضاها را بررسی می کنیم. پس از آن با آوردن مثال هایی نشان می دهیم که اساس ادعاهای (دهاگه) مرتبط با ساختار توپولوژی این فضاها نادرست است و لذا بسیاری از نتایج مرتبط با این فضاها رد شده و فضای متریک تعمیم یافته اصلاح شده ای به نام فضای g- متریک معرفی می شود و برخی قضایای نقطه ثابت د...
15 صفحه اولقضایای نقطه ثابت در فضاهای متریک فازی
در این پایان نامه با معرفی نگاشت های فازی انقباضی و نگاشت های بطور یکنواخت پیوسته به بررسی وجود و یکتایی نقاط ثابت در این نوع توابع می پردازیم. در ادامه با معرفی نگاشت های سازگار در فضاهای متریک فازی یک قضیه نقطه ثابت را برای چهار نگاشت سازگار از نوع (i) و (ii)مورد بررسی قرار می دهیم. در نهایت یک شکل فازی از قضیه نقطه ثابت لیف شیتز ارائه می گردد
15 صفحه اولقضایای نقطه ثابت در فضاهای متریک
قضیه نقطه ثابت باناخ در جهات مختلف و توسط افراد زیادی توسیع داده شد. در این پایان نامه بعد از مفاهیم اولیه در فصل اول و ارائه چند توسیع از قضیه مشهور باناخدر فصل دوم، دو نوع قضیه نقطه ثابت در فصل سوم ارائه می کنیم که یکی شامل تابع محک و دیگری شامل شرط انقباض مییر-کیلر است و در ادامه دو قضیه کلی را برای اثبات هم ارزی بین این دو نوع قضیه ثابت می کنیم و در فصل چهارم قضیه نقطه ثابت جدیدی را ارائه خ...
15 صفحه اولقضایای نقطه ثابت در فضاهای متریک مخروطی
در این پایان نامه به بررسی وجود نقطه ی ثابت برای رده ای از نگاشت ها که تعمیم هایی از انقباض ها هستند می پردازیم. ویژگی همه ی این نگاشت ها آن است که تکرارهای پیکارد برای آن ها همگرا به نقطه ی ثابت نگاشت می شود. این بررسی ها ابتدا در فضای متریک معمولی و سپس در فضا های متریک با ترتیب جزئی، متریک برداری و نهایتاً فضاهای متریک مخروطی انجام شده است.
تعمیم هایی از قضایای نقطه ی ثابت در فضاهای متریک
در این رساله ابتدا قضیه ی نقطه ی ثابت ندلر و چند تعمیم از آن بیان شده است. سپس مفهوم انقباض تعمیم یافته را برای نگاشت های مجموعه مقداری تعریف کرده و با بیان چند قضیه، وجود نقاط ثابت برای این نگاشت ها را مورد بررسی قرار می دهیم. همچنین یک شمول دیفرانسیل هایپربولیک را به کمک این قضیه ها حل می کنیم. در ادامه چند قضیه ی نقطه ی ثابت جدید برای نگاشت های مجموعه مقداری تحت شرط انقباضی جدید اثبات می کنی...
15 صفحه اولقضایای نقطه ی ثابت در فضاهای متریک مخروطی
در بسیاری از موارد، استفاده از ریاضیات به معنای حل معادله می باشد. با ایم هدف، مهم تریم مساله ای که باید مورد توجه قرار گیرد آن است که آیا معادله ی مورد نظر جواب دارد یا خیر؟ برای مثال قضیه ی بولتزانو وجود حداقل یک ریشه را برای توابع پیوسته ای که روی یک بازه تعریف شده و در دو انتهای بازه مقادیر مختلف العلامه ای را اختیار می کنند، ایجاب می کند. امروزه، آنالیز غیرخطی و آنالیز غیر محدب کاربردهای ...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023